182 lines
6.5 KiB
Python
182 lines
6.5 KiB
Python
import json
|
|
import os
|
|
import unicodedata
|
|
|
|
from collections import OrderedDict
|
|
from pprint import pprint
|
|
|
|
|
|
# Read the data
|
|
def fileReader(folder, dataset):
|
|
files = os.listdir(folder)
|
|
for file in files:
|
|
file_path = os.path.join(folder, file)
|
|
with open(file_path, 'r', encoding='utf-8') as json_file:
|
|
Data = json.load(json_file)
|
|
dataset.append(Data)
|
|
|
|
return dataset
|
|
|
|
|
|
# Article data structure transfer
|
|
def arDataTransform(au_folder, ar_dataset, num):
|
|
def auInfoFind(path, file_name, ar_data, num):
|
|
authors = ar_data.get('authors')
|
|
authors.append(ar_data.get('corresponding_authors'))
|
|
|
|
file_path = os.path.join(path, file_name)
|
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|
Data = json.load(file)
|
|
|
|
au_ID = [] # A new list to store author_id
|
|
|
|
# Find the author_id
|
|
for author in authors:
|
|
author = author.replace(" ", "")
|
|
|
|
for Dict in Data:
|
|
Dict_name = Dict.get('first_name') + "," + Dict.get('last_name')
|
|
Dict_name = ''.join(char for char in unicodedata.normalize('NFKD', Dict_name) if
|
|
unicodedata.category(char) != 'Mn')
|
|
|
|
if Dict.get('from_article')[0] == ar_data.get('article_id') and Dict_name == author:
|
|
au_ID.append(Dict.get('author_id'))
|
|
|
|
# Change the structure
|
|
ar_data_transform = {
|
|
"article_id": ar_data['article_id'],
|
|
"title": ar_data['title'],
|
|
"authors": au_ID,
|
|
"authors_name": ar_data['authors'],
|
|
"submit_datetime": ar_data['submit_datetime'],
|
|
"publish_datetime": ar_data['publish_datetime'],
|
|
"keywords": ar_data['keywords'],
|
|
"MSC": ar_data['MSC'],
|
|
"URL": ar_data['URL'],
|
|
"DOI": ar_data['DOI'],
|
|
"publisher": ar_data['publisher'],
|
|
"journal": ar_data['journal'],
|
|
"volume": ar_data['volume'],
|
|
"issue": ar_data['issue'],
|
|
"page": ar_data['page']
|
|
}
|
|
|
|
num[0] += 1 # Update the counter
|
|
return ar_data_transform
|
|
|
|
# ====== Main code for function =====
|
|
ar_names = os.listdir(au_folder) # Read the folder
|
|
|
|
for ar_list in ar_dataset:
|
|
for Dict in ar_list:
|
|
if num[0] % 100 == 0 and num[0] != 0: # Alert for complete data
|
|
print(str(num[0]) + " copies of article data structure have been transformed.")
|
|
|
|
if int(Dict.get('volume')) <= 2009:
|
|
Dict = auInfoFind(au_folder, ar_names[3], Dict, num)
|
|
ar_dataset_new[3].append(Dict)
|
|
|
|
elif 2010 <= int(Dict.get('volume')) <= 2014:
|
|
Dict = auInfoFind(au_folder, ar_names[0], Dict, num)
|
|
ar_dataset_new[0].append(Dict)
|
|
|
|
elif 2015 <= int(Dict.get('volume')) <= 2020:
|
|
Dict = auInfoFind(au_folder, ar_names[1], Dict, num)
|
|
ar_dataset_new[1].append(Dict)
|
|
|
|
else:
|
|
Dict = auInfoFind(au_folder, ar_names[2], Dict, num)
|
|
ar_dataset_new[2].append(Dict)
|
|
|
|
# Store into the new file
|
|
filepaths = [
|
|
"./EJQTDE_buffer_transform/Article_output/EJQTDE_Article_output_file(oldest).json",
|
|
"./EJQTDE_buffer_transform/Article_output/EJQTDE_Article_output_file(2010-2014).json",
|
|
"./EJQTDE_buffer_transform/Article_output/EJQTDE_Article_output_file(2015-2020).json",
|
|
"./EJQTDE_buffer_transform/Article_output/EJQTDE_Article_output_file(newest).json",
|
|
]
|
|
|
|
for filepath in filepaths:
|
|
for list in ar_dataset_new:
|
|
with open(filepath, "w", encoding='utf-8') as json_file:
|
|
json.dump(list, json_file, indent=4)
|
|
|
|
break
|
|
|
|
print("\nComplete: All of the article data structure have been transformed.")
|
|
|
|
|
|
# Author data structure transfer
|
|
def auDataTransform(au_dataset, num):
|
|
def transform(list, num):
|
|
new_list = [] # New list to store transformed data
|
|
|
|
for au_data in list:
|
|
if num[0] % 100 == 0 and num[0] != 0: # Alert for complete data
|
|
print(str(num[0]) + " copies of author data structure have been transformed.\n")
|
|
|
|
if au_data['middle_name'] is not None:
|
|
raw_name = au_data['first_name'] + ' ' + au_data['middle_name'] + ' ' + au_data['last_name']
|
|
else:
|
|
raw_name = au_data['first_name'] + ' ' + au_data['last_name']
|
|
|
|
au_data_transform = {
|
|
"author_id": au_data['author_id'],
|
|
"from_article": au_data['from_article'][0],
|
|
"first_name": au_data['first_name'],
|
|
"last_name": au_data['last_name'],
|
|
"middle_name": au_data['middle_name'],
|
|
"raw_name": raw_name,
|
|
"affiliation": au_data['affiliation']
|
|
}
|
|
|
|
new_list.append(au_data_transform)
|
|
num[0] += 1 # Update the counter
|
|
|
|
return new_list
|
|
|
|
# Transform the author data structure
|
|
au_dataset_new = [] # New list to store transformed data
|
|
|
|
for au_list in au_dataset:
|
|
au_list_new = transform(au_list, num)
|
|
au_dataset_new.append(au_list_new)
|
|
|
|
# Store into the new file
|
|
filepaths = [
|
|
"./EJQTDE_buffer_transform/Author_output/EJQTDE_Author_output_file(oldest).json",
|
|
"./EJQTDE_buffer_transform/Author_output/EJQTDE_Author_output_file(2010-2014).json",
|
|
"./EJQTDE_buffer_transform/Author_output/EJQTDE_Author_output_file(2015-2020).json",
|
|
"./EJQTDE_buffer_transform/Author_output/EJQTDE_Author_output_file(newest).json",
|
|
]
|
|
|
|
for filepath in filepaths:
|
|
for list in au_dataset_new:
|
|
with open(filepath, "w", encoding='utf-8') as json_file:
|
|
json.dump(list, json_file, indent=4)
|
|
|
|
break
|
|
|
|
print("\nComplete: All of the author data structure have been transformed.")
|
|
|
|
|
|
# ========== Main code ========== #
|
|
# New list for storing data
|
|
ar_dataset = []
|
|
au_dataset = []
|
|
|
|
ar_dataset_new = [[] for _ in range(4)] # New list for transformed data
|
|
|
|
num1 = [0] # Counter for complete ar_date
|
|
num2 = [0] # Counter for complete au_data
|
|
|
|
os.makedirs('./EJQTDE_buffer_transform/Article_output/', exist_ok=True)
|
|
os.makedirs('./EJQTDE_buffer_transform/Author_output/', exist_ok=True)
|
|
|
|
# Read the data
|
|
ar_dataset = fileReader('./EJQTDE_buffer/Article_output', ar_dataset)
|
|
au_dataset = fileReader('./EJQTDE_buffer/Author_output', au_dataset)
|
|
|
|
# Change the structure
|
|
arDataTransform('./EJQTDE_buffer/Author_output', ar_dataset, num1)
|
|
auDataTransform(au_dataset, num2) |