# Core dependencies # IMPORTANT: Install PyTorch with CUDA 12.8 support first using: # pip3 install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128 # Then install remaining dependencies with: pip install -r requirements.txt # PyTorch - version will be satisfied by pre-installed nightly build # Minimum version for CUDA 12.8 support (will use nightly/2.3.0+ in practice) torch>=2.2.0 torchvision>=0.17.0 torchaudio>=2.2.0 # HuggingFace Transformers transformers>=4.38.0 # HuggingFace Datasets datasets>=2.14.0 # HuggingFace Tokenizers tokenizers>=0.15.0 numpy>=1.23.0 scipy>=1.10.0 scikit-learn>=1.3.0 pandas>=1.5.0 FlagEmbedding>=1.2.0 # For CPU use faiss-cpu faiss-gpu>=1.7.4 psutil>=5.9.0 omegaconf>=2.3.0 toml>=0.10.2 tqdm>=4.64.0 pyyaml>=6.0 jsonlines>=3.1.0 huggingface-hub>=0.19.0 jieba>=0.42.1 requests>=2.28.0 # Optional/dev dependencies # For Huawei Ascend NPU support (install only if needed) # torch-npu>=1.11.0.post1; platform_system=="Linux" and platform_machine=="aarch64" # ascend-compiler; platform_system=="Linux" and platform_machine=="aarch64" # For experiment tracking (optional) wandb # optional, for Weights & Biases logging # For visualization (optional) tensorboard # optional, for TensorBoard logging # For testing and development pytest # optional, for running tests # For ModelScope support (optional) modelscope # optional, for ModelScope model hub sentence-transformers>=2.2.2 accelerate>=0.25.0 rank-bm25>=0.2.2 # For logging and distributed loguru>=0.7.0