Img2Vec/readme.md
2025-06-13 07:13:03 +00:00

1.0 KiB
Raw Permalink Blame History

Img2Vec

A rough implementation of generating image embeddings through methodologies introduced in LLaVA

Structure

We derived the image embeddings by using a CLIP encoder and mapping it with the pretrained LLaVAs projection weight

Prerequisites

  1. install requirements.txt
  2. Make sure you have downloaded pytorch_model-00003-of-00003.bin
  3. For example image data, I use 2017 Val images 5K/1GB and 2017 Train/Val annotations 241MB

Usage

Replace image-dir and llava-ckpt to your test image folder addr and pytorch_model-00003-of-00003.bin addr and run:

python starter.py --image-dir ./datasets/coco/val2017 --output-dir imgVecs --vision-model openai/clip-vit-large-patch14-336 --proj-dim 5120 --llava-ckpt ./datasets/pytorch_model-00003-of-00003.bin --batch-size 64