bge_finetune/docs/validation_guide.md
2025-07-23 14:54:46 +08:00

438 lines
14 KiB
Markdown

# BGE Fine-tuning Validation Guide
This guide provides comprehensive instructions for validating your fine-tuned BGE models to ensure they actually perform better than the baseline models.
## 🎯 Overview
After fine-tuning BGE models, it's crucial to validate that your models have actually improved. This guide covers multiple validation approaches:
1. **Quick Validation** - Fast sanity checks
2. **Comprehensive Validation** - Detailed performance analysis
3. **Comparison Benchmarks** - Head-to-head baseline comparisons
4. **Pipeline Validation** - End-to-end retrieval + reranking tests
5. **Statistical Analysis** - Significance testing and detailed metrics
## 🚀 Quick Start
### Option 1: Run Full Validation Suite (Recommended)
The easiest way to validate your models is using the validation suite:
```bash
# Auto-discover trained models and run complete validation
python scripts/run_validation_suite.py --auto-discover
# Or specify models explicitly
python scripts/run_validation_suite.py \
--retriever_model ./output/bge-m3-enhanced/final_model \
--reranker_model ./output/bge-reranker/final_model
```
This runs all validation tests and generates a comprehensive report.
### Option 2: Quick Validation Only
For a fast check if your models are working correctly:
```bash
python scripts/quick_validation.py \
--retriever_model ./output/bge-m3-enhanced/final_model \
--reranker_model ./output/bge-reranker/final_model \
--test_pipeline
```
## 📊 Validation Tools
### 1. Quick Validation (`quick_validation.py`)
**Purpose**: Fast sanity checks to verify models are working and show basic improvements.
**Features**:
- Tests model loading and basic functionality
- Uses predefined test queries in multiple languages
- Compares relevance scoring between baseline and fine-tuned models
- Tests pipeline performance (retrieval + reranking)
**Usage**:
```bash
# Test both models
python scripts/quick_validation.py \
--retriever_model ./output/bge-m3-enhanced/final_model \
--reranker_model ./output/bge-reranker/final_model \
--test_pipeline
# Test only retriever
python scripts/quick_validation.py \
--retriever_model ./output/bge-m3-enhanced/final_model
# Save results to file
python scripts/quick_validation.py \
--retriever_model ./output/bge-m3-enhanced/final_model \
--output_file ./results.json
```
**Output**: Console summary + optional JSON results file
### 2. Comprehensive Validation (`comprehensive_validation.py`)
**Purpose**: Detailed validation across multiple datasets with statistical analysis.
**Features**:
- Tests on all available datasets automatically
- Computes comprehensive metrics (Recall@K, Precision@K, MAP, MRR, NDCG)
- Statistical significance testing
- Performance degradation detection
- Generates HTML reports with visualizations
- Cross-dataset performance analysis
**Usage**:
```bash
# Comprehensive validation with auto-discovered datasets
python scripts/comprehensive_validation.py \
--retriever_finetuned ./output/bge-m3-enhanced/final_model \
--reranker_finetuned ./output/bge-reranker/final_model
# Use specific datasets
python scripts/comprehensive_validation.py \
--retriever_finetuned ./output/bge-m3-enhanced/final_model \
--test_datasets data/datasets/examples/embedding_data.jsonl \
data/datasets/Reranker_AFQMC/dev.json \
--output_dir ./validation_results
# Custom evaluation settings
python scripts/comprehensive_validation.py \
--retriever_finetuned ./output/bge-m3-enhanced/final_model \
--batch_size 16 \
--k_values 1 3 5 10 20 \
--retrieval_top_k 100 \
--rerank_top_k 10
```
**Output**:
- JSON results file
- HTML report with detailed analysis
- Performance comparison tables
- Statistical significance analysis
### 3. Model Comparison Scripts
**Purpose**: Head-to-head performance comparisons with baseline models.
#### Unified Model Comparison (`compare_models.py`)
```bash
# Compare retriever
python scripts/compare_models.py \
--model_type retriever \
--finetuned_model ./output/bge-m3-enhanced/final_model \
--baseline_model BAAI/bge-m3 \
--data_path data/datasets/examples/embedding_data.jsonl \
--batch_size 16 \
--max_samples 1000
# Compare reranker
python scripts/compare_models.py \
--model_type reranker \
--finetuned_model ./output/bge-reranker/final_model \
--baseline_model BAAI/bge-reranker-base \
--data_path data/datasets/examples/reranker_data.jsonl \
--batch_size 16 \
--max_samples 1000
# Compare both at once
python scripts/compare_models.py \
--model_type both \
--finetuned_retriever ./output/bge-m3-enhanced/final_model \
--finetuned_reranker ./output/bge-reranker/final_model \
--retriever_data data/datasets/examples/embedding_data.jsonl \
--reranker_data data/datasets/examples/reranker_data.jsonl
```
**Output**: Tab-separated comparison tables with metrics and performance deltas.
### 4. Validation Suite Runner (`run_validation_suite.py`)
**Purpose**: Orchestrates all validation tests in a systematic way.
**Features**:
- Auto-discovers trained models
- Runs multiple validation approaches
- Generates comprehensive reports
- Provides final verdict on model quality
**Usage**:
```bash
# Full auto-discovery and validation
python scripts/run_validation_suite.py --auto-discover
# Specify models and validation types
python scripts/run_validation_suite.py \
--retriever_model ./output/bge-m3-enhanced/final_model \
--reranker_model ./output/bge-reranker/final_model \
--validation_types quick comprehensive comparison
# Custom settings
python scripts/run_validation_suite.py \
--retriever_model ./output/bge-m3-enhanced/final_model \
--batch_size 32 \
--max_samples 500 \
--output_dir ./my_validation_results
```
**Output**:
- Multiple result files from each validation type
- HTML summary report
- Final verdict and recommendations
### 5. Validation Utilities (`validation_utils.py`)
**Purpose**: Helper utilities for validation preparation and analysis.
**Features**:
- Discover trained models in workspace
- Analyze available test datasets
- Create sample test data
- Analyze validation results
**Usage**:
```bash
# Discover trained models
python scripts/validation_utils.py --discover-models
# Analyze available test datasets
python scripts/validation_utils.py --analyze-datasets
# Create sample test data
python scripts/validation_utils.py --create-sample-data --output-dir ./test_data
# Analyze validation results
python scripts/validation_utils.py --analyze-results ./validation_results
```
## 📁 Understanding Results
### Result Files
After running validation, you'll get several result files:
1. **`validation_suite_report.html`** - Main HTML report with visual summary
2. **`validation_results.json`** - Complete detailed results in JSON format
3. **`quick_validation_results.json`** - Quick validation results
4. **`*_comparison_*.txt`** - Model comparison tables
5. **Comprehensive validation folder** with detailed metrics
### Interpreting Results
#### Overall Verdict
- **🌟 EXCELLENT** - Significant improvements across most metrics
- **✅ GOOD** - Clear improvements with minor degradations
- **👌 FAIR** - Mixed results, some improvements
- **⚠️ PARTIAL** - Some validation tests failed
- **❌ POOR** - More degradations than improvements
#### Key Metrics to Watch
**For Retrievers**:
- **Recall@K** - How many relevant documents are in top-K results
- **MAP (Mean Average Precision)** - Overall ranking quality
- **MRR (Mean Reciprocal Rank)** - Position of first relevant result
- **NDCG@K** - Normalized ranking quality with graded relevance
**For Rerankers**:
- **Accuracy** - Correct classification of relevant/irrelevant pairs
- **MRR@K** - Mean reciprocal rank in top-K results
- **NDCG@K** - Ranking quality with position discounting
**For Pipeline**:
- **End-to-End Recall@K** - Overall system performance
- **Pipeline Accuracy** - Correct top results after retrieval + reranking
#### Statistical Significance
The comprehensive validation includes statistical tests to determine if improvements are significant:
- **Improvement %** - Percentage improvement over baseline
- **Statistical Significance** - Whether improvements are statistically meaningful
- **Effect Size** - Magnitude of the improvement
## 🔧 Troubleshooting
### Common Issues
#### 1. Models Not Found
```
❌ Retriever model not found: ./output/bge-m3-enhanced/final_model
```
**Solution**:
- Check that training completed successfully
- Verify the model path exists
- Use `--discover-models` to find available models
#### 2. No Test Datasets Found
```
❌ No test datasets found!
```
**Solution**:
- Place test data in `data/datasets/` directory
- Use `--create-sample-data` to generate sample datasets
- Specify datasets explicitly with `--test_datasets`
#### 3. Validation Failures
```
❌ Comprehensive validation failed
```
**Solution**:
- Check model compatibility (tokenizer issues)
- Reduce batch size if running out of memory
- Verify dataset format is correct
- Check logs for detailed error messages
#### 4. Poor Performance Results
```
⚠️ More degradations than improvements
```
**Analysis Steps**:
1. Check training data quality and format
2. Verify hyperparameters (learning rate might be too high)
3. Ensure sufficient training data and epochs
4. Check for data leakage or format mismatches
5. Consider different base models
### Validation Best Practices
#### 1. Before Running Validation
- ✅ Ensure training completed without errors
- ✅ Verify model files exist and are complete
- ✅ Check that test datasets are in correct format
- ✅ Have baseline models available for comparison
#### 2. During Validation
- 📊 Start with quick validation for fast feedback
- 🔬 Run comprehensive validation on representative datasets
- 📈 Use multiple metrics to get complete picture
- ⏱️ Be patient - comprehensive validation takes time
#### 3. Analyzing Results
- 🎯 Focus on metrics most relevant to your use case
- 📊 Look at trends across multiple datasets
- ⚖️ Consider statistical significance, not just raw improvements
- 🔍 Investigate datasets where performance degraded
## 🎯 Validation Checklist
Use this checklist to ensure thorough validation:
### Pre-Validation Setup
- [ ] Models trained and saved successfully
- [ ] Test datasets available and formatted correctly
- [ ] Baseline models accessible (BAAI/bge-m3, BAAI/bge-reranker-base)
- [ ] Sufficient compute resources for validation
### Quick Validation (5-10 minutes)
- [ ] Run quick validation script
- [ ] Verify models load correctly
- [ ] Check basic performance improvements
- [ ] Test pipeline functionality (if both models available)
### Comprehensive Validation (30-60 minutes)
- [ ] Run comprehensive validation script
- [ ] Test on multiple datasets
- [ ] Analyze statistical significance
- [ ] Review HTML report for detailed insights
### Comparison Benchmarks (15-30 minutes)
- [ ] Run retriever comparison (if applicable)
- [ ] Run reranker comparison (if applicable)
- [ ] Analyze performance deltas
- [ ] Check throughput and memory usage
### Final Analysis
- [ ] Review overall verdict and recommendations
- [ ] Identify best and worst performing datasets
- [ ] Check for any critical issues or degradations
- [ ] Document findings and next steps
## 🚀 Advanced Usage
### Custom Test Datasets
Create your own test datasets for domain-specific validation:
```jsonl
// For retriever testing (embedding_format)
{"query": "Your query", "pos": ["relevant doc 1", "relevant doc 2"], "neg": ["irrelevant doc 1"]}
// For reranker testing (pairs format)
{"query": "Your query", "passage": "Document text", "label": 1}
{"query": "Your query", "passage": "Irrelevant text", "label": 0}
```
### Cross-Domain Validation
Test model generalization across different domains:
```bash
python scripts/comprehensive_validation.py \
--retriever_finetuned ./output/bge-m3-enhanced/final_model \
--test_datasets data/medical_qa.jsonl data/legal_docs.jsonl data/tech_support.jsonl
```
### Performance Profiling
Monitor resource usage during validation:
```bash
python scripts/comprehensive_validation.py \
--retriever_finetuned ./output/bge-m3-enhanced/final_model \
--batch_size 8 \ # Reduce if memory issues
--max_samples 100 # Limit samples for speed
```
### A/B Testing Multiple Models
Compare different fine-tuning approaches:
```bash
# Test Model A
python scripts/comprehensive_validation.py \
--retriever_finetuned ./output/model_A/final_model \
--output_dir ./validation_A
# Test Model B
python scripts/comprehensive_validation.py \
--retriever_finetuned ./output/model_B/final_model \
--output_dir ./validation_B
# Compare results
python scripts/validation_utils.py --analyze-results ./validation_A
python scripts/validation_utils.py --analyze-results ./validation_B
```
## 📚 Additional Resources
- **BGE Model Documentation**: [BAAI/bge](https://github.com/FlagOpen/FlagEmbedding)
- **Evaluation Metrics Guide**: See `evaluation/metrics.py` for detailed metric implementations
- **Dataset Format Guide**: See `data/datasets/examples/format_usage_examples.py`
- **Training Guide**: See main README for training instructions
## 💡 Tips for Better Validation
1. **Use Multiple Datasets**: Don't rely on a single test set
2. **Check Statistical Significance**: Small improvements might not be meaningful
3. **Monitor Resource Usage**: Ensure models are efficient enough for production
4. **Validate Domain Generalization**: Test on data similar to production use case
5. **Document Results**: Keep validation reports for future reference
6. **Iterate Based on Results**: Use validation insights to improve training
## 🤝 Getting Help
If you encounter issues with validation:
1. Check the troubleshooting section above
2. Review the logs for detailed error messages
3. Use `--discover-models` and `--analyze-datasets` to debug setup issues
4. Start with quick validation to isolate problems
5. Check model and dataset formats are correct
Remember: Good validation is key to successful fine-tuning. Take time to thoroughly test your models before deploying them!